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In this paper we one deals with the theoretically study of the magnetic and transport properties on carbon nanotubes. To 
this aim one resorts to a tight binding model by accounting for a single π- band, in which spin degrees of freedom have also 
been accounted for. We show that the application of an external magnetic field produces changes in transport properties of 
carbon nanotubes. When the applied magnetic field is parallel to the tube axis, one gets faced with the implementation of 
the well-known Aharonov-Bohm (AB) quantum phase which is relevant for applications in mesoscopic devices. We found 
that the AB-oscillations in carbon nanotubes with zig-zag boundary conditions are characterized by integer (ф0) and (ф0/2) 
magnetic-flux periods. This result leads to sawtooth-type oscillations relying on the parity of the electron number. In the 
presence of a transversal magnetic field we found a halving of the Fermi velocity and an increase of the density of states 
(DOS) in metallic nanotubes, which is reflected in conductance measurements, while the energy gap is suppressed in 
semiconducting nanotubes. 
 
(Received October 20, 2016; accepted October 10, 2017) 
 
Keywords: Carbon nanotubes, Persistent currents, Aharonov-Bohm effect 
 
 
 

1. Introduction 
 
Theoretical investigations concerning persistent 

currents and AB effect in mesoscopic structures based 
on graphene and carbon nanotubes, in the presence of 
magnetic field have received much attention during the 
last years [1, 2]. This opens the way for technological 
applications in nanodevices [3, 4].  

Graphene (a monolayer graphite) is a material 
consisting of an individual layer of carbon atoms 
arranged in a two dimensional hexagonal lattice [5-7]. 
The energy band structure and structural properties of 
graphene and carbon nanotubes are calculated using a 
tight binding model based on the nearest neighbor 
interaction which includes one pz orbital per carbon 
atom. 

The discovery of carbon nanotubes [8] which are 
basically rolled up sheets of graphite hexagonal 
networks of carbon atoms forming tubes opened a new 
field of research in the physics at nanoscales [9]. 
Depending on the orientation and the direction of the 
edges leads to three types of nanotubes called armchair, 
zigzag and chiral nanotubes. The electronic structure of 
carbon nanotubes can be derived from the electronic 
structure of graphene [10], after introducing periodic 
boundary conditions due to the cylindrical geometry of 
the tube. This results in a set of 1D energy dispersion 
relations which are cross-sections of those for 2D 
graphene. All the armchair nanotube (m-n=0), exhibit a 
metallic character. For the zigzag nanotube, the 
character depends on chirality: if (m-n) is a multiple of 
3, there is no gap in the energy spectrum, showing 

metallic character, if (m-n) is not a multiple of 3, the gap is 
non-zero so that the character is semiconducting. 

In the presence of the magnetic flux we have to account 
for similarities with small mesoscopic metallic rings. 
Accordingly, the Aharonov-Bohm oscillations and the 
persistent currents exhibit alternately integer periods (ф0) 
and halved periods (ф0/2). Recall that the magnetic flux 
quantum is given by ф0=hc/e. The density of states (DOS) 
depends of the size nanotube, which is reflected in 
conductance measurements. Those with small diameters 
have a large gap and those with large diameters have a small 
gap and begin to behave like graphene at high temperatures.  

 
 
2. Model and formulation 
 
The hexagonal lattice of graphene is characterized by 

lattice vectors like  2/,2/31 aaa   and 

 2/,2/32 aaa  , where 03aa  , a0 = 1.42Å is the C-C 

distance. The points K and K’ situated at the corners of the 
first Brillouin zone of graphene are named Dirac points and 
their positions in momentum space are given by [11], 

 aaK 33/2,3/2  ,  aaK 33/2,3/2'   . 

The well known energy bands for graphene [12] derived 
using tight binding hamiltonian are [13] 
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Tight binding model shows, that graphene has full 
valence band and empty conduction band, while the top 
of the valence band has exactly the same energy as the 
bottom of the conduction band. Therefore graphene is 
called a zero band-gap semiconductor or semimetal, 
since electronic properties get ranged between the ones 
of metal and semiconductors. The energy bands of 
graphene at low energies are described by a 2D Dirac-
like equation with linear dispersion near K/K′-points in k 
space. 

The one-dimensional band structure of carbon 
nanotube is obtained by quantization the two-
dimensional band structure of the graphene sheet along 
the circumferential direction of the nanotube [14]. The 
chiral vector  

 

21 namaCh  ,                               (2) 

 
determines the circumference of the carbon nanotube (m, 
n are integers). Eliminating kx, or ky by using the 
periodic boundary condition,  
 

lkCh  2 ,                                      (3) 

 
where l is an integer, we get 1D energy bands for 
general chiral structures. We can define a quantization 
rule [15], 
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The energy dispersion relation for the case m=n, 

armchair nanotube (n, n), is obtained by substituting of 
the discrete allowed values for kx into Eq. 1. In this case, 
all the armchair nanotubes (m-n=0), present a metallic 
character. 
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where, .  ka  Thus due the periodic boundary 
condition along the x direction, the wavevector 
component kx is quantized, 
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Next, we consider the case m=0, the zigzag 

nanotube (n,0) or (n,-n) which gives a simple 
quantization rule in the form,  
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So,  
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where, .3/3/ 0   akx  We obtain that just 1/3 of the 

possible nanotubes are metallic when the condition m-n is 
multiple of 3 is fulfilled. 

 
 
3. Results 
 
In this paper we describe the oscillations of 

magnetization and persistent currents when a magnetic field 
is applied along the axis of the nanotube (Aharonov Bohm 
effect (AB)). The AB effect reflects the dependence of the 
phase of the electron wave on the magnetic field.  

We describe the AB oscillations and the persistent 
currents only for the case with zigzag boundary condition, 
based on an extended tight-binding model, now by using a 
single π- band, which are dependent on the magnetic flux Ф, 
like the case of mesoscopic metallic rings [16].  

The magnetic flux is given by:  
 

SdB   ,                                 (10) 

 

where 2RS   is the area, with R being the radius of the 
carbon nanotube. 

The expression of the magnetic phase factor [17, 18] is: 
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where, A  denotes the vector potential associated with the 
applied perpendicular magnetic field B .  

The wave function acquires an additional phase factor. 
This leads to the modification of the wave number k, like: 

0

'




h
yy C

kk  .                          (12) 

 
Fixing the number of electrons the total magnetization is 

given in terms of the sum over states [19] 

dB

dE
M tot .                                  (13) 

 
The magnetic field induces a persistent current along the 

transversal direction of the nanotube  

d

dE
cI tot ,                                   (14) 

 
in which, totE  denotes the total energy, namely 
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On sees that Etot is given by the sum over all 

occupied single-particle (noninteracting electrons) 
energies, while the index σ runs over spins. In 
calculating Etot, only the single-particle tight binding 
energies with εi(B)>0 are considered [20]. 

The AB patterns exhibited by the magnetization 
curves display a well developed (although apparently not 
perfect) alternation pattern between integer periods (ф0) 
and halved periods (ф0/2), as long as the highest 
occupied state lies in the interior of the sixfold energy 
band. The ф0/2 period reflects the zigzag nature of 
related states. Moreover, period doubling effects in the 
oscillations of persistent currents in discretized AB-rings 
have also been discussed [21]. 

In Fig. 1-3, we displayed the magnetization curves 
with the number of electrons ranging from N=57-72. 
The AB patterns can be described as an odd even effect 
due to a two-electron alternation as a function of N [22], 
where N=12i+N0 (i=1,2,3,… and N0=1,2,…,6).  
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(a)                                                                   

 
Ф/Ф0 

(b) 
 

Fig. 1. Magnetization as a function of the magnetic 
flux Ф (spin is included). (a) N=63; shifted halved-

period sawtooth pattern; (b) N=64; shifted sawtooth 
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Fig. 2. Magnetization as a function of the magnetic flux Ф 

(spin is included). (a) N=65; shifted halved-period 
sawtooth pattern, (b) N=66; sawtooth pattern 

 
 
 

As can be seen in Fig. 1-3, we found nontrivial odd-
even parity effects in the flux-dependence of the total 
current, which concerns both the period of oscillations as 
well as the corresponding magnitudes. In the studied range 
(N=60 to N=72), the magnetization curves exhibit an odd-
even effect associated with the alternation between a whole-
period sawtooth oscillation and a halved-period sawtooth 
pattern as shown in Fig.1-3(a). The last curve (N=72) 
showing a full-period with rounded-sawtooth behavior (Fig. 
3(b)) and the two curves for the bottom level (N=61, N=62), 
exhibit both a full-period sawtooth behavior. 
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Fig. 3. Magnetization as a function of the magnetic 
flux Ф (spin is included). (a) N=69; shifted halved-
period sawtooth pattern; (b)N=72; rounded sawtooth 

 
 

The density of states (DOS) evolution from graphite 
to a nanotube is based on size quantization effects arise 
when the dimensions are reduced [23]. 

The DOS represents the number of energy 
eigenstates per unit energy   
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and depends on )(kE


. The energy levels can be 

described by a parabolic dispersion relation with some 
effective mass m*: 
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The allowed states in k-space are distributed with a 
density of (L/2π) per unit k, where L stands for the length of 
nanotube. So, the total number of allowed states is given by: 
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The total number of states:   
 

  


2/1*2
)( cEEmL

EN


 ,                     (19) 

 
is in accord with Eq. 17. 

Considering the Eq.9, for the energy dispersion relation, 
the DOS expression for a zigzag nanotube becomes:  
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Analytically it is possible to replace the l-summation by 

an integral. Then the DOS for zigzag nanotubes is given by:  
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   (a)                                                  (b) 

 
Fig. 4. Density of states D(E) for a zigzag nanotube (solid line) 
compared with graphite (crosses line). (a) n = 150 
(corresponding to d = 11.55 nm); (b) n = 1500 (d = 115.5 nm). 
 
 
The semiconducting DOS gap depends on the size of 

the nanotube. We note that the smaller nanotube has a DOS 
that is distinctly different from graphite. But the larger 
nanotube is less distinguishable. Those with small diameters 
have a large gap and those with large diameters have a small 
gap (Fig. 4).  This is especially true at high temperatures, 
when nanotubes with a large diameter begin to look like 
graphene. Recent experiments have confirmed such 
theoretical predictions.  
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4. Conclusions 
 
We obtained the electronic structure of nanotubes 

from the electronic structure of graphene by calculating 
how rolling of the sheet affects the electronic structure.  

We succeeded to prove the universality of integer 
(hc/e) and half-integer (hc/2e) values for the period of 
the AB oscillations as a function of the magnetic flux, in 
consonance with the case of mesoscopic metal rings. 
The AB effect is a fundamental phenomenon of quantum 
interference related on the transmission of particles 
through a closed loop pierced by a magnetic flux. Odd-
even (in the number of Dirac electrons, N) sequences 
sawtooth-type patterns relating to the halving of the 
period have also been found. 

We demonstrated that the semiconducting DOS gap 
depends on the size of nanotube. DOS experimental 
measurements show in addition sharp peaks that are 
characteristic signatures of the one-dimensional (1D) 
nature of the conductance. We have to remark that the 
1D nature of the electron system in nanotubes has been 
confirmed by resonant Raman scattering experiments.   

 
 
Acknowledgements 
 
The authors thanks Prof. E. Papp for useful 

discussions and remain indebted to the late Prof. C. 
Micu for her supports and encouragements. 

 
 
References 
 

  [1] S. Roche, G. Dresselhaus, M. S. Dresselhaus,  
        R.Saito, Phys. Rev. B 62, 16092 (2000). 
  [2] P. Recher, B. Trauzettel, A. Rycerz, Y. M. Blanter,     
        C.W. J. Beenakker, A. F. Morpurgo, Phys. Rev. B  
         76, 235404 (2007). 
  [3] A. Fujiwara, K. Tomiyama, H. Suematsu,  
        M.  Yumura, K. Uchida, Phys. Rev. B  
        60, 13492 (1999).  
  [4] N. Kim, J. Kim, J.-O Lee, K. Kang, K.-H. Yoo,  
         J. W. Park, H.-W. Lee, J.-J. Kim, J. Phys. Soc. Jpn.  
         70, 789 (2001). 
  [5] K. S. Novoselov, A. K. Geim,  S. V. Morozov, 
        D. Jiang,  Y. Zhang, S. V. Dubonos,  
        I. V. Grigorieva, A. A. Firsov, Science  
        306, 666 (2004).  
 
 
 
 
 
 
 
 
 
 
 
 

  [6] C. Berger, Z. Song, X. Li, X. Wu, N. Brown,  
        C. Naud, D. Mayou, T. Li, J. Hass,  
        A. N. Marchenkov, E. H. Conrad, P. N. First,   
        W. A. de Heer Science 312, 1191 (2006).  
  [7] S. B. Sinnott, R. Andrews, Critical Reviews in  
        Solid State and Materials Sciences 26, 145 (2001). 
  [8] R. Saito G. Dresselhaus, M. S. Dresselhaus,  
        Physical Properties of Carbon Nanotubes, Imperial  
        College Press, London 1998, p. 259. 
  [9] P.R. Wallace, Physical Review 17, 9 (1947). 
[10] S. Iijima, Nature 354, 56 (1991). 
[11] P.L. McEuen, Nature 393, 15 (1998). 
[12] V. Popov, Materials Science and Engineering  
        43(3), 61 (2004). 
[13] S. Belluci (ed), Physical Properties of Ceramic and  
        Carbon Nanoscale Structures, The INFN Lectures,  
         Vol. II, Springer-Verlag Berlin Heidelberg (2011). 
[14] D. Racolta, C. Andronache, D. Todoran,  
        R. Todoran, Rom. J. Phys. 61, 992 (2016) 
[15] J. Schelter, P. Recher, B. Trauzettel, Solid State  
        Communications 152, 1411 (2012). 
[16] D. Racolta, C. Micu, Analele Univ. de Vest 
         57, 52 (2013). 
[17] E. Papp, C. Micu, Low dimensional nanoscale systems  
        on discrete spaces, World Scientific, Singapore,  
        (2007).  
[18] G. Ardelean, Appl. Math. Comput. 218, 88 (2011) 
[19] A. H. Castro Neto, F. Guinea, N. M. R. Peres,  
        K. S. Novoselov, A. K. Geim, Reviews of Modern  
         Physics 81, 109 (2009). 
[20] P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter,  
        C. W. J. Beenakker, A. F. Morpurgo, Phys. Rev. B  
         76, 235404 (2007). 
[21] E. Pap, C. Micu, D. Racolta, Physica E 36, 178 (2007). 
[22] I. Romanovsky, C. Yannouleas, U. Landman, Phys.  
        Rev. B 85, 165434 (2012). 
[23] S. Datta, Quantum Transport: Atom to Transistor,  
        Cambridge University Press, New York (2005). 
 
 
 
 
 
____________________________________ 
*Corresponding author: daniaracolta@yahoo.com 
 
   


